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A regioselective synthesis of aryl substituted arylacetates
through ring transformation by ethyl levulinateI
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Abstract—A regioselective synthesis of sterically hindered ethyl arylacetates in one step through ring transformation of suitably
functionalized 6-aryl-3,4-disubstituted-2H-pyran-2-ones with ethyl levulinate at room temperature in excellent yields is described.
� 2006 Elsevier Ltd. All rights reserved.
Phenylacetic acid I occurs naturally in plasma and forms
conjugates with glutamin in human and higher prima-
tes.1,2 The presence of higher levels of phenylacetic acid
in plasma reduces3 the glutamin concentration, essential
for the proliferation of cancer cells, and is useful in the
treatment of cancer.4 Clofibric acid II, an analog, dis-
plays broad spectrum activity including cytostasis and
differentiation in various solid tumors.5–7

The aliphatic chain of aromatic fatty acids metabolizes
repeatedly through b-oxidation8 while the phenyl ring
remains unaffected. Structurally, phenylacetic acid I
and clofibric acid II share an aromatic nucleus and car-
boxylic acid features and exhibit hypolipidemic proper-
ties. Both I and II also inhibit cholesterol synthesis9 and
protein prenylation in glioblastoma cells.
CH2COOH
O

Cl

X

Y

CH3

COOC2H5

COOH

CH3

CH3

R

I II III
Alternatively, the esters of phenylacetic acid especially
with linalool, are very useful as fragrance compounds10

in decorative cosmetics, shampoos, toilet-soaps, and
also in products such as household cleaners and
detergents.10
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The diverse pharmacological activities of arylacetic
acids prompted us to develop a novel route for the
synthesis of aryl substituted ethyl arylacetates III to
explore their therapeutic potential, in particular, by
improving their bioavailability and lipophilicity. The
synthetic strategies reported in the literature for the
synthesis of ethyl arylacetates and analogs are cumber-
some and suffer from low yields. These are synthesized
by the Wittig reaction of acetophenone and meth-
oxymethylenetriphen- ylphosphonium chloride followed
by hydrolysis of the resulting enol ether to the corre-
sponding aldehyde which on further oxidation yields11

phenylacetic acid I. Another method is based on the
Friedel–Crafts reaction of chloroacetic acid with
benzene using Lewis acids as catalysts.12 Recently, lan-
thanide trifluoromethanesulfonates13a,b have been em-
ployed as catalysts both in organic and aqueous
media. Kobayashi et al.13a have used Yb(OTf)3 as a
catalyst in Friedel–Crafts acylation reactions. Arylace-
tates have also been synthesized by the reaction of
carbon dioxide and various Grignard reagents. The
difficulty in this process is the synthesis of moisture
sensitive Grignard reagents since they are not available
commercially. These compounds are also obtained
through acid hydrolysis of arylacetonitriles14 in good
yields. The acids so formed can be esterified15 by reac-
tion with alcohol using Filtrol-24, Amberlyst-15, zirco-
nium sulfate or heteropolyacids as catalysts.

We report here a very simple and economical regioselec-
tive synthesis of highly sterically hindered ethyl arylacet-
ates III through ring transformation of 2H-pyran-2-one
1 with ethyl levulinate. This is the first report on the
synthesis of ethyl arylacetates from 2H-pyran-2-ones in
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one-step under very mild reaction conditions. Thus, an
equimolar mixture of 2H-pyran-2-one 1, ethyl levulinate
2 and powdered KOH in dry DMF was stirred for 5 h.
The progress of the reaction was monitored by TLC
until the starting material had completely disappeared.
Thereafter, the mixture was poured onto crushed ice
with vigorous stirring. The aqueous solution was neu-
tralized with 10% HCl and the resulting precipitate
was filtered and purified by silica gel column chromato-
graphy. The precursor 2H-pyran-2-ones 1a–h were
prepared16 by stirring an equimolar mixture of aryl
methyl ketones and methyl 3,3-dimethylthio-2-cyano/
carbomethoxyacrylate and KOH in dry DMSO. The
6-aryl-4-piperidin-1-yl-2H-pyran-2-one-3-carbonitriles
1i–k were synthesized by refluxing a mixture of 6-aryl-
4-methylsulfanyl-2H-pyran-2-one-3-carbonitriles with
piperidine in ethanol for 5 h and isolated as described
earlier.17
In the structure of 2H-pyran-2-one 1, C-2, C-4, and C-6
are three electrophilic centers in which the latter is
highly susceptible to nucleophilic attack due to extended
conjugation and the presence of an electron-withdraw-
ing substituent at C-3 of the pyran ring. Ethyl levulinate
2, has two possible sites, C-3, and C-5, for carbanion
formation and accordingly two products were expected
from this reaction. However, only one product, ethyl
6-aryl-2-methyl-3-cyano/carbomethoxy-4-piperidin-1-
yl/methyl-sulfanylphenylacetate 3 was isolated regio-
selectively in good yields. The isolation of 3 clearly
indicates the involvement of a carbanion formed at
C-3 of ethyl levulinate 2, possibly due to the combined
inductive effects of the carbonyl and ester groups. The
C-5 position in 2 is only influenced by the inductive
effect of a carbonyl group which is not as effective as
C-3 for generating a carbanion for the reaction to yield
ethyl 3-(5-aryl-2,3-disubstituted-phenyl)propionates 4
(Scheme 1). An independent NOE experiment to ascer-
tain the substitution pattern in 3 was carried out. Irradi-
ation of the benzylic protons in 3i influenced the peak
intensity of the methyl as well as the aromatic protons
and vice-versa. This confirmed the substitution pattern.

All the synthesized compounds were characterized by
spectroscopic and elemental analyses.18

Our methodology provides an easy access to the synthe-
sis of highly sterically hindered ethyl arylacetates 3 in
one step and in excellent yields without the use of any
catalyst with the possibility for introducing substituents
at various positions on the phenyl ring. The reaction is
very economical and the work-up is very simple.
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NCH2), 3.46 (s, 2H, CH2), 4.13 (q, J = 7.12 Hz, 2H, CH2),
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